Recomendações para correção e adubação de pastagens tropicais

Pirassununga
Faculdade de Zootecnia e Engenharia de Alimentos
2018
Recomendações para correção e adubação de pastagens tropicais

DOI: 10.11606/9788566404227

Pirassununga
Faculdade de Zootecnia e Engenharia de Alimentos
2018
PREFÁCIO

A elaboração deste livro é uma das iniciativas de ampliação no acesso à informação e transferência de tecnologia, desenvolvida pelo Grupo de Estudos em Forragicultura e Pastagens (GEFEP) da Faculdade de Zootecnia e Engenharia de Alimentos (FZEA-USP).

Nesta edição, nosso objetivo é fornecer instruções, de maneira simples e prática, para correção e adubação de pastagens tropicais.

Esperamos que essa iniciativa possa colaborar para o desenvolvimento dos sistemas produtivos na região, contribuir para recuperação das pastagens e, ainda, oportunizar melhorias em produtividade e persistência das gramíneas tropicais.
SUMÁRIO

SISTEMA SOLO-PLANTA-ANIMAL

- Ciclagem de nutrientes ... 5
- Adubação não faz milagre! 7

EXIGÊNCIAS DAS ESPÉCIES FORRAGEIRAS

FERTILIDADE DO SOLO

- O que devo corrigir? ... 11
- Quais níveis devo atingir? 12

TIPOS DE FERTILIZANTES

- Tipos de fertilizantes ... 14

IMPLEMENTANDO PRÁTICAS CORRETIVAS

- Calagem ... 16
- Escolha do calcário ... 17
- Formas de aplicação do calcário 18
- Cálculo da quantidade de calcário 19
- Gessagem ... 20
- Formas de aplicação de gesso 21
- Cálculo da quantidade de gesso 22
- Fosfatagem .. 23
- Potassagem .. 25

MACRONUTRIENTES

- Nitrogênio (N) ... 27
- Recomendações para adubação nitrogenada 29
- Fósforo (P) ... 30
- Recomendações para adubação fosfatada 33
A garantia de uma boa produção das pastagens está diretamente ligada à manutenção do equilíbrio no sistema solo-planta-animal. Isso significa que todos os nutrientes extraídos pelos animais devem ser repostos.

Parte dos nutrientes extraídos pelo animal, ao consumir a forragem, fica retido no produto (cerca de 10% na carne e 25% no leite). Outra parte retorna naturalmente ao solo pela urina e decomposição das excretas e forragem não consumida.

Aguiar (2002)

Todavia, dos nutrientes que retornam ao solo pela ciclagem natural, parte é perdida por volatilização, principalmente o N, por lixiviação, por erosão no caso do N, K, S, Ca e Mg, e fixação às partículas do solo, como é o caso do P.

SISTEMA SOLO-PLANTA-ANIMAL
Estima-se que entre 35% a 85% dos nutrientes que retornam ao solo via fezes, urina ou decomposição de partes da planta, incluindo as raízes, sejam perdidos. Apenas 10 a 20% dos nutrientes é efetivamente reciclado e fica disponível, novamente, para a planta.

As perdas de nutrientes são maiores quando:
- Há pouca matéria orgânica no solo;
- Elevada proporção de solo desnudo e pouca cobertura vegetal;
- Pastagens mal manejadas, particularmente quando ocorre super pastejo.

Assim, para mantermos as pastagens produtivas, é necessário repor os nutrientes, através da adubação do solo.
ADUBAÇÃO NÃO FAZ MILAGRE!

LEMBRE-SE

As práticas corretivas e a adubação do solo são apenas parte dos requisitos necessários para obtenção de sucesso do sistema de produção em pastagens.

A escolha da espécie forrageira para cada situação e o conhecimento de suas exigências são fatores essenciais para assegurar a persistência e produtividade.

De nada adianta investir na melhoria da fertilidade do solo se descuidar no manejo da pastagem

A ausência de um deles é o suficiente para degradar a pastagem

Braga (2013)
ADUBAÇÃO NÃO FAZ MILAGRE!!!

LEMBRE-SE:

Fatores climáticos afetam a produtividade e, por isso, devem ser considerados determinantes das decisões sobre a aplicação estratégica de práticas corretivas e/ou de adubação.

A adubação deve ser realizada nas épocas de maior potencial de resposta da planta e quando há água disponível para solubilização e absorção dos nutrientes.

A sazonalidade na produção de forragem é amplamente conhecida em diversas regiões. Nesse sentido, deve-se ter em mente que a prática da adubação não muda o fato de que as pastagens irão produzir menos nas épocas frias e/ou secas do ano.

Assim, para garantir forragem ao rebanho nas épocas de escassez, deve haver sugestões para o planejamento na época seca:

- Diferimento
- Silagem de capim
- Silagem de milho, sorgo ou grão úmido
- Irrigação

SISTEMA SOLO-PLANTA-ANIMAL
As espécies forrageiras são divididas em **grupos**, com base em suas exigências nutricionais.

<table>
<thead>
<tr>
<th>Grupo I - Espécies Exigentes em Fertilidade de Solo</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Cultivares e híbridos de Panicum maximum:</td>
</tr>
<tr>
<td>Aruana, Tanzânia, Centenário, Colonião, Vencedor,</td>
</tr>
<tr>
<td>Tobiatã, Massai, BRS Quênia, BRS Zuri, BRS</td>
</tr>
<tr>
<td>Tamani, MG12 Paredão</td>
</tr>
<tr>
<td>- Cultivares e híbridos do gênero Cynodon:</td>
</tr>
<tr>
<td>Coastrcross, Tiftons, Jiggs</td>
</tr>
<tr>
<td>- Cultivares e híbridos de Pennisetum purpureum:</td>
</tr>
<tr>
<td>Napier, Cameroon, Anão, Guaçu, Mineiro, BRS</td>
</tr>
<tr>
<td>Capiaçu e BRS Kurumi</td>
</tr>
<tr>
<td>Outros:</td>
</tr>
<tr>
<td>Mulato II (Convert HD364), Capim Rhodes (Chloris</td>
</tr>
<tr>
<td>gayana); Jaraguá (Hyparrenia rufa); Pangola e</td>
</tr>
<tr>
<td>transvala (Digitaria decumbens); Quicuí (Pennisetum</td>
</tr>
<tr>
<td>clandestinum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupo II - Espécies Moderadamente Exigentes em Fertilidade de Solo</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Cultivares de Panicum maximum:</td>
</tr>
<tr>
<td>Greenpanic, Mombaça</td>
</tr>
<tr>
<td>- Cultivares de Brachiaria brizantha:</td>
</tr>
<tr>
<td>Marandu, Xaraés, BRS Piatã, Paiaguás, MG13 Braúna, BRS</td>
</tr>
<tr>
<td>Ipyporã</td>
</tr>
<tr>
<td>- Cultivares e híbridos de Cynodon:</td>
</tr>
<tr>
<td>Cynodon plectostachyus e cultivares e híbridos do grupo ‘Estrelas’</td>
</tr>
<tr>
<td>Outros:</td>
</tr>
<tr>
<td>Brachiaria ruziziensis, Andropogon gayanus (Andropogon);</td>
</tr>
<tr>
<td>Paspalum guenoarum (Ramirez)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupo III - Espécies Pouco Exigentes em Fertilidade de Solo</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Cultivares de Brachiaria decumbens:</td>
</tr>
<tr>
<td>Comum, Basilisk, Ipean</td>
</tr>
<tr>
<td>- Cultivares de Brachiaria humidicola:</td>
</tr>
<tr>
<td>Comum (Quicuído da Amazônia), Tupí, Dictyoneura/Lianero</td>
</tr>
<tr>
<td>Outros:</td>
</tr>
<tr>
<td>Paspalum notatum (Batatais ou Gramão,Pensacola); Melinis</td>
</tr>
<tr>
<td>minutiflora (Gordura); Setaria anceps (Setária)</td>
</tr>
</tbody>
</table>

O Grupo I é o mais exigente em fertilidade de solo e, portanto, requer adubações mais frequentes e em maiores quantidades. O Grupo II representa espécies de média exigência, enquanto o Grupo III compreende espécies menos exigentes. Esses grupos serão utilizados para as recomendações de correção e adubação do solo, contidas neste livro.
Após identificar as exigências da espécie forrageira utilizada como pastagem em sua propriedade, devemos garantir o suprimento de nutrientes. As quantidades de cada nutriente são definidas a partir de uma recomendação de adubação. Para que a recomendação seja adequada, é necessário uma análise de solo de sua propriedade.

As amostras deverão ser retiradas em áreas uniformes de até 10 hectares na profundidade de 20 cm, tendo antes o cuidado de limpar a superfície dos locais escolhidos, removendo as folhas e outros detritos.

Recomenda-se a retirada de 15 a 20 amostras por gleba homogênea, que deverão ser colocadas juntas em um balde limpo, misturadas dentro do balde, retirando-se uma amostra final em torno de 500 g.

<table>
<thead>
<tr>
<th>MACRONUTRIENTES (g/kg)</th>
<th>MICRONUTRIENTES (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMÁRIOS</td>
<td></td>
</tr>
<tr>
<td>- Nitrogênio (N)</td>
<td>- Boro (B)</td>
</tr>
<tr>
<td>- Fósforo (P)</td>
<td>- Cloro (Cl)</td>
</tr>
<tr>
<td>- Potássio (K)</td>
<td>- Cobre (Cu)</td>
</tr>
<tr>
<td></td>
<td>- Ferro (Fe)</td>
</tr>
<tr>
<td></td>
<td>- Manganês (Mn)</td>
</tr>
<tr>
<td>SECUNDÁRIOS</td>
<td></td>
</tr>
<tr>
<td>- Enxofre (S)</td>
<td>- Molibdênio (Mo)</td>
</tr>
<tr>
<td>- Cálcio (Ca)</td>
<td>- Níquel (Ni)</td>
</tr>
<tr>
<td>- Magnésio (Mg)</td>
<td>- Silício (Si)</td>
</tr>
</tbody>
</table>
| | - Zinco (Zn)
O QUE DEVO CORRIGIR?

A primeira etapa para ajustar a fertilidade, a fim de atender as exigências da espécie que você possui, é corrigir as deficiências do solo. O conjunto de práticas a serem implementadas nessa etapa são denominada práticas corretivas. Essas práticas devem ser adotadas quando se deseja recuperar pastagens degradadas, por ocasião da implantação de uma nova espécie forrageira em um solo de baixa fertilidade, ou se a pastagem já formada não recebe nenhum tipo de correção e adubação há algum tempo.

A correta recomendação da quantidade de calcário e as doses de nutrientes para correção do solo devem ser baseadas no resultado da análise do solo da propriedade!
As práticas corretivas, a estratégia de aplicação e as doses de adubação a serem adotadas devem se basear no resultado da análise do solo.

As faixas "muito baixo e baixo" representam a maior parte dos solos brasileiros, ou seja, solos pobres em nutrientes. Nesses casos, a adubação de correção será definida a fim de elevar os níveis dos nutrientes pelo menos até o teor crítico, considerado adequado ao desenvolvimento da cultura de interesse.

Para correção e elevação dos níveis de P e K, o fertilizante será aplicado de uma só vez, sendo, assim, denominada adubação de correção total.

Essa estratégia não é indicada para solos muito arenosos, quando os teores de P ou K forem muito baixos ou baixos, pois as quantidades de adubo de correção somadas àsquelas de manutenção poderão ser muito altas. Isso pode acarretar em perdas de nutrientes por lixiviação.

Adaptado de Gianello & Wiethölter (2004)
QUAIS NÍVEIS DEVO ATINGIR?

A recomendação para esses casos é a utilização da adubação corretiva gradual. A adubação de correção deve ser feita ao menos a cada três anos, quando uma nova análise vai demonstrar se há necessidade de uma nova correção com quantidades menores de fertilizantes.

Após a correção do solo, a adubação de manutenção tem por objetivo repor os nutrientes retirados pela cultura e aqueles que foram perdidos. Em pastagens estabelecidas, a adubação de manutenção será aplicada de forma parcelada na época de crescimento da pastagem, após a saída dos animais ou a cada 30 dias. O ideal é que uma parcela seja aplicada após cada ciclo de pastejo.

A adubação de manutenção deve ser feita anualmente

A adubação de reposição será adotada quando os teores de nutrientes no solo estiverem acima do nível crítico. Assim, essa adubação irá repor os nutrientes extraídos pela planta e, ao mesmo tempo, manter os teores do solo sempre elevados.

(Braga, 2013)
Um fertilizante é toda substância orgânica ou mineral, natural ou sintética, que pode fornecer um ou mais nutrientes para as plantas. A adubação do solo pode ser feita por meio do uso de fertilizantes diversos, dependendo da disponibilidade na região. O fertilizante sintético, também chamado de mineral, são sais inorgânicos de diferentes solubilidades, e podem ser simples (uréia), mistos (como as fórmulas comerciais NPK), e complexos (aqueles que possuem vários nutrientes em um mesmo grânulo).

Adubos verdes são plantas utilizadas para melhoria das condições físicas, químicas e biológicas do solo. As leguminosas são mais utilizadas porque se decompõem mais rápido, e são capazes de se associar à bactérias fixadoras que transferem o N para o solo.

Fertilizantes orgânicos são de origem vegetal ou animal, sólidos ou líquidos, como esterco, cama de aviário, farinhas, cascas e restos de vegetais, e devem passar por um processo de compostagem, para que os nutrientes possam ser disponibilizados às plantas.
TIPOS DE FERTILIZANTES

Há diferenças entre os fertilizantes orgânicos e sintéticos quanto sua composição, vantagens e desvantagens. Os fertilizantes orgânicos irão nutrir o solo e alimentar os microorganismos contidos nele e que, futuramente, liberarão os nutrientes disponíveis para as plantas. Já nos fertilizantes sintéticos, os nutrientes se apresentam prontamente disponíveis para as plantas.

Para nutrir um dado tipo de solo, será necessário uma quantidade maior de fertilizantes orgânicos. Porém, a adubação orgânica contribui para a matéria orgânica e agregação do solo. Por isso se fala que ela nutre o solo e a planta. Quanto aos fertilizantes sintéticos, deve-se ter cautela ao utilizar altas dosagens para não salinizar o solo, indisponibilizar alguns nutrientes ou queimar as estruturas da planta.
Os solos brasileiros são caracterizados pelo alto intemperismo, baixo pH (solos ácidos) e altos teores de alumínio e manganês, que podem ser tóxicos às plantas.

Solos ácidos não permitem que boa parte dos nutrientes estejam disponíveis para as plantas, o que resulta em baixo potencial de crescimento do pasto.

Portanto, caso o seu solo não possua um pH adequado, a adubação não será efetiva.

É preciso realizar a calagem antes.

Além de neutralizar o pH e fornecer Ca e Mg às plantas, a calagem:

AUMENTA
- Disponibilidade de fósforo;
- Mineralização da matéria orgânica;
- Fixação biológica de nitrogênio;

DIMINUI
- Disponibilidade de alumínio e manganês;
- Diminuição compactação do solo.
ESCOLHA DO CALCÁRIO

Há dois tipos de calcário:
- calcítico
- dolomítico

Quando o teor de magnésio do solo estiver abaixo de 5 mmol$_C$/dm3 deve-se dar preferência para uso de calcário dolomítico.

Além disso, deve-se observar o PRNT do calcário. Quanto maior o PRNT maior a pureza, melhor a qualidade do calcário (maior reatividade e poder de neutralização), e menor a quantidade a ser aplicada.

Solos arenosos, com baixos teores em matéria orgânica são potencialmente pobres em cálcio e, portanto, precisam de calagem com maior frequência.

IMPORTANTE

A ação do calcário não é imediata. Logo sua aplicação deve ser realizada com, no mínimo, 3 meses de antecedência.

Uma alternativa para elevação do pH do solo, é a utilização de cama de aviário. Porém, ao utilizar esse insumo, deve-se garantir que tenha passado pelo processo de compostagem, além de se atentar para a quantidade aplicada (altas concentrações podem levar toxicidade de fósforo).
CALAGEM: FORMAS DE APLICAÇÃO

A aplicação pode ser realizada com o uso de um implemento agrícola ou, em áreas menores, pode ser espalhado manualmente.

Em pastagens já estabelecidas, a melhor forma de aplicar o calcário é em lanço, sem incorporação. Dessa forma, não haverá prejuízos ao sistema radicular das plantas.

PARA MELHORES RESULTADOS:
Lembre-se de rebaixar o pasto antes da aplicação

Não é recomendada a aplicação de calcário em doses muito elevadas. Respeito o limite de:

DOSE MÁXIMA

Em solos argilosos até 2,5 ton/ha
Em solos argiloso-arenoso e arenoso até 2,0 ton/ha

(Sá, 1999)

Doses maiores que essas podem causar desequilíbrio nutricional nas plantas e indisponibilizar micronutrientes metálicos (Cu, Fe, Zn e MN). Caso sua análise de solo indique a necessidade de doses elevadas, faça uma correção gradual ao longo de dois ou três anos.
CÁLCULO DA QUANTIDADE DE CALCÁRIO

A calagem permite elevar a saturação de bases do solo (V%), sendo que a quantidade de calcário (NC) é calculada a fim de ajustar a fertilidade do solo na camada de 0-20 cm.

No estado de São Paulo, a quantidade de calcário é definida para atingir o valor de V% requerido pela espécie forrageira.

Mesmo as espécies menos exigentes em fertilidade de solo, necessitam de Ca e Mg como nutrientes.

Adaptado de IAC – Boletim 100

<table>
<thead>
<tr>
<th>Gramíneas</th>
<th>Saturação por bases desejada (V%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formação</td>
</tr>
<tr>
<td>Gramíneas para fenação</td>
<td>70</td>
</tr>
<tr>
<td>Grupo I (exigentes)</td>
<td>70</td>
</tr>
<tr>
<td>Grupo II (média exigência)</td>
<td>60</td>
</tr>
<tr>
<td>Grupo III (baixa exigência)</td>
<td>40</td>
</tr>
</tbody>
</table>

Para realizar o cálculo utiliza-se a fórmula:

\[
\text{NC [ton/ha]} = \frac{\left(V_2 - V_1 \right) \times CTC}{(10 \times \text{PRNT})}
\]

Sendo:

\[V_1 = \text{V% da análise do solo; } V_2 = \text{V% desejada, de acordo com a exigência da espécie forrageira; } CTC = \text{CTC efetiva, constante no laudo de análise do solo; e PRNT do calcário a ser aplicado.} \]
A gessagem deve ser utilizada quando a análise do solo apontar uma ou mais dessas condições:

- Cálculo for menor que 0,5 cmolc/dm³ ou 5 mmolc/dm³;
- Alumínio foi maior que 0,5 cmolc/dm³ ou 5 mmolc/dm³;
- Saturação por alumínio (m%) for maior que 20%

O gesso (CaSO₄ – sulfato de cálcio) é considerado um **condicionador de solo**, ou seja, promove a melhoria das propriedades físico-químicas e favorece a atividade biológica do solo.

Adaptado de Sousa et al. (1992) e Vitti & Priori (2009)

A gessagem propicia o desenvolvimento das raízes até camadas mais profundas. Isso faz com que tenham acesso a maior volume de água e nutrientes.

O gesso agrícola é utilizado nas pastagens como fonte de cálcio e enxofre, além de reduzir a saturação de alumínio nas camadas subsuperficiais do solo (abaixo de 20 cm). Isso ocorre pois o enxofre (SO₄²⁻) se liga (forma par iônico) com o Ca²⁺ e Mg²⁺, arrastando-os para profundidades maiores, dependendo da textura do solo.

(Sousa et al., 2001)
FORMAS DE APLICAÇÃO DE GESSO

Aplicação: O gesso agrícola deve ser aplicado em lanço antes, junto ou depois da calagem. Não há necessidade de incorporação. O gesso pode ser aplicado em qualquer época do ano, mas o ideal é antes do início da estação chuvosa, para que o produtor já tenha o benefício no ano de aplicação.

O gesso agrícola não é um corretivo para acidez, pois não modifica o pH do solo.
CÁLCULO DA QUANTIDADE DE GESSO

As recomendações da Embrapa Cerrados, para definição da quantidade de gesso, têm por base o teor de argila ou classe textural do solo.

GESSO com 15% S (kg/ha) = 50 x teor de argila do solo (%)

<table>
<thead>
<tr>
<th>Clasificação do Solo</th>
<th>CTC (mmolc/dm³)</th>
<th>Culturas anuais</th>
<th>Culturas perenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arenoso (<15% argila)</td>
<td></td>
<td>700</td>
<td>1050</td>
</tr>
<tr>
<td>Médio (16 a 35% argila)</td>
<td></td>
<td>1200</td>
<td>1800</td>
</tr>
<tr>
<td>Argiloso (36 a 60% argila)</td>
<td></td>
<td>2200</td>
<td>3300</td>
</tr>
<tr>
<td>Muito Argiloso (> 60% argila)</td>
<td></td>
<td>3200</td>
<td>4800</td>
</tr>
</tbody>
</table>

Adaptado de: Sousa et al. (2001)

As doses de gesso recomendadas por este critério podem ter efeito residual por até 5 anos ou mais. Gesso em excesso pode carregar cátions (Ca e Mg) e causar desequilíbrio nutricional nas plantas.

Outra alternativa para definir a quantidade de gesso agrícola é através da CTC e a saturação por bases (V%) do solo, na camada 0 a 40 cm:

<table>
<thead>
<tr>
<th>CTC (mmolc/dm³)</th>
<th>V (%)</th>
<th>GESSO (ton/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30</td>
<td><10</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>10 a 20</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>20 a 35</td>
<td>1,0</td>
</tr>
<tr>
<td>30 – 60</td>
<td><10</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>10 a 20</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>20 a 35</td>
<td>1,5</td>
</tr>
<tr>
<td>60 – 100</td>
<td><10</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>10 a 20</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>20 a 35</td>
<td>2,5</td>
</tr>
</tbody>
</table>

FOSFATAGEM

Em solos ácidos, o P é facilmente fixado (devido à acidez). Além disso, na presença Fe e Al, formam-se compostos insolúveis entre esses elementos que torna o P não disponível para as plantas.

Estima-se que do P aplicado no solo, a planta aproveita apenas de 15 a 25%. Daí, a necessidade de ser feita calagem prévia para corrigir a acidez do solo, a fim de aumentar a disponibilidade do P. Como os solos do Brasil, em geral, são deficientes de P, a fosfatagem é indispensável para elevar os níveis do nutriente no solo.

COM FOSFATAGEM

- Maior acesso à água e nutrientes
- A planta resiste mais a danos de pragas do solo (percevejo castanho, Migdolus...)
- Maior resistência a veranicos (seca)
- MAIOR PRODUTIVIDADE

SISTEMA RADICULAR BEM DISTRIBUÍDO

www.fertipar.com.br
FOSFATAGEM

A adubação corretiva de fósforo (fosfatagem) pode ser definida com base no teor de argila do solo. Pode-se utilizar entre 5 kg de P$_2$O$_5$ para cada 1% de argila do solo. Vamos supor um solo com 50% de argila e a utilização média de 5 kg/ha de P$_2$O$_5$, teríamos:

\[5 \text{ kg de P}_2\text{O}_5 \times 50\% = 250 \text{ kg/ha de P}_2\text{O}_5\]

Outra forma de definir a dose de P a ser aplicada na fosfatagem é por meio da definição de quantos mg/dm3 de P se quer elevar no solo. Estima-se que cada 10 kg de P$_2$O$_5$ é capaz de elevar 1 mg/dm3 de P no solo. Então, se o seu solo possui por exemplo, 5 mg/dm3 de P e deseja-se elevar esse valor a 20 mg/dm3 de P no solo, temos que aumentar 15 mg/dm3 de P no solo. Assim, teríamos:

Aumentar 15 mg/dm3 de P \times 10 kg de P$_2$O$_5$ = 150 kg/ha de P$_2$O$_5$

Em pastagens estabelecidas, a fosfatagem é feita em lance e em cobertura. Mas, quando for feita fosfatagem no plantio ou semeadura, é interessante que se faça uma incorporação, pois o P é pouco móvel no solo e precisa de contato com a raiz para ser absorvido.
A potassagem é utilizada para elevar os níveis do nutriente no solo, até um valor considerado adequado para obter 95% do rendimento máximo da cultura. Recomenda-se que os teores de K trocável no solo (resina), em mmol$_c$/dm3, estejam acima de 3.

A aplicação, em uma única vez, de doses maiores que 100 kg/ha de K$_2$O não é recomendada, pois altas quantidades de K podem ser perdidas por lixiviação.

Áreas previamente e ocupadas por milho ou cana e que não receberam adubações periódicas ou que possuam elevados rendimentos das culturas, podem ser muito pobres em K.

Na falta de critério adequado, a potassagem em pastagens poderia ser baseada nas recomendações para cana-planta, conforme tabela abaixo:

<table>
<thead>
<tr>
<th>Exigência/ Produtividade Esperada</th>
<th>Potássio trocável (em mmolc/dm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 a 0,7</td>
</tr>
<tr>
<td>Baixa</td>
<td>100</td>
</tr>
<tr>
<td>Média</td>
<td>150</td>
</tr>
<tr>
<td>Alta</td>
<td>200</td>
</tr>
</tbody>
</table>

Fonte: Raij et al. (1997) - Boletim 100
APÓS AS PRÁTICAS CORRETIVAS

Após a correção do solo, pode-se proceder o estabelecimento da pastagem. No caso de pastagens já estabelecidas, a correção periódica é essencial para não degradá-las.

Em ambos os casos, a adubação de manutenção é a próxima etapa a ser implementada, sendo fundamental para garantia do crescimento e produtividade da planta forrageira.

Ela deve ser feita empregando-se nitrogênio (N) e potássio (K), ou formulações comerciais NPK. O nitrogênio geralmente é utilizado na forma de Uréia, e o potássio na forma de Cloreto de Potássio (KCl), enquanto existem diversas fontes de fósforo, que serão descritas a seguir.

As quantidades vão depender das condições do solo, exigência da espécie forrageira e nível de intensificação do
NITROGÊNIO (N)

Função: Participa dos mecanismos fisiológicos relacionados ao aumento da produção de matéria seca, pois estimula aumento do número e tamanho de perfilhos. É um dos maiores limitantes para a produção de forragem. Devido a sua alta mobilidade e utilização, este deve ser reposto ao solo após cada pastejo ou a cada 30 dias.

Fontes: Fora a fixação do N₂ atmosférico no solo por meio das bactérias ou dos relâmpagos, podemos utilizar fontes orgânicas (leguminosas) ou sintéticas. No caso da adubação sintética, os principais fertilizantes são:

PRINCIPAIS FERTILIZANTES SINTÉTICOS

UREIA (45% de N)
Alta concentração de N, fácil manipulação e menor chance de acidificação;
Cuidado com a **volatização**, a qual implica em perdas.
Verifique a viabilidade de usar ureia protegida

SULFATO DE AMÔNIO (21% de N)
Menor perda de N por volatilização;
Fonte de enxofre (24% de S) mesmo que seu custo seja superior ao da ureia.
Cuidado com a acidificação do solo

NITRATO DE AMÔNIO (32% de N)
Não apresenta perda por volatilização;
São absorvidos mais facilmente pelas plantas
Não acidifica o solo

Aplicação: Para evitar perdas e maximizar a utilização do adubo pela pastagem deve-se aplicar, preferencialmente, na época das águas, após cada ciclo de pastejo ou a cada 30 dias. No caso de aplicação no período das secas, somente se houver irrigação para garantir o benefício da adubação. A primeira adubação de cobertura em pastagens é feita de 45 a 60 dias após a semeadura, geralmente, quando em torno de 70% da área já estiver com as sementes germinadas ou as mudas brotadas, sendo realizada em lanço e de maneira uniforme em toda a área. Em pastagens já estabelecidas, a primeira dose deve ser aplicada após as primeiras chuvas da estação de crescimento. Um detalhe importante a ser observado quando se aplica a Uréia, é a necessidade de umidade no solo para evitar perdas do N por volatilização.

Sintomas de deficiência: Apresenta as folhas mais velhas amareladas, diminui a quantidade e tamanho de folhas. Crescimento reduzido, devido ao menor perfilhamento, e menor valor nutritivo para o animal.

(Motta T. P. 2016)

Níveis nutricionais: 6% - 20% - 100% - 200% do ideal da solução de Arnon e Hoogland
RECOMENDAÇÕES PARA ADUBAÇÃO NITROGENADA

<table>
<thead>
<tr>
<th>Nível de intensificação</th>
<th>N em kg/ha/ano</th>
<th>Aplicação</th>
<th>Espécies forrageiras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixo < 1 UA/ha</td>
<td>50 a 100</td>
<td>1 no Início das águas ou aplicar pelo menos 15 kg de N/ha após cada pastejo</td>
<td>Assume-se a utilização de espécies menos exigentes (Grupo III)</td>
</tr>
<tr>
<td>Médio ~4 UA/ha</td>
<td>100 a 150</td>
<td>1 no Início das águas com 50 kg de N/ha + 2 de 25 a 50 kg de N/ha</td>
<td>Assume-se a utilização de espécies dos Grupos II ou III</td>
</tr>
<tr>
<td>Alto 4 a 7 UA/ha</td>
<td>200 a 300</td>
<td>1 no Início das águas com 50 kg de N/ha + 3 a 5 com 50 kg de N/ha após os pastejos</td>
<td>Assume-se a utilização de espécies exigentes (Grupo I)</td>
</tr>
<tr>
<td>Muito Alto Irrigado</td>
<td>> 300</td>
<td>1 no Início das águas com 50 kg de N/ha + 50-60 kg de N/ha após cada pastejo</td>
<td>Assume-se a utilização de espécies exigentes (Grupo I)</td>
</tr>
</tbody>
</table>

Adaptado de Cantarutti et al. (1999) e Costa et al. (2006)

<table>
<thead>
<tr>
<th>Nível de intensificação</th>
<th>Espécies forrageiras</th>
<th>Ureia kg (45% N₂O)</th>
<th>Sulfato kg (21% N₂O)</th>
<th>Nitrato kg (35% N₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixo < 1 UA/ha</td>
<td>Decumbens, humidicola, batatais, gordura, setária</td>
<td>110 a 220</td>
<td>240 a 480</td>
<td>145 a 290</td>
</tr>
<tr>
<td>Médio ~4 UA/ha</td>
<td>Brizantas, Panicums e Cynodons menos exigentes</td>
<td>220 a 330</td>
<td>480 a 715</td>
<td>290 a 430</td>
</tr>
<tr>
<td>Alto 4 a 7 UA/ha</td>
<td>Pennisetum, Panicum, Cynodon, Digitaria</td>
<td>450 a 670</td>
<td>950 a 1400</td>
<td>570 a 860</td>
</tr>
<tr>
<td>Muito Alto Irrigado</td>
<td>Pennisetum, Panicum, Cynodon, etc.</td>
<td>>700</td>
<td>>1478</td>
<td>>887</td>
</tr>
</tbody>
</table>
FÓSFORO (P)

Função: O P desempenha uma importante função no desenvolvimento do sistema radicular, além de auxiliar na maximização do perfilhamento das gramíneas.

Fontes de P: Os adubos fosfatados são classificados de acordo com sua solubilidade em água

<table>
<thead>
<tr>
<th>Fosfatos naturais</th>
<th>São insolúveis em água, provenientes de rochas fosfatadas moídas. Geralmente com baixa eficiência no fornecimento de P, lenta dissolução e baixa reatividade.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex: Araxá, patos de minas e catalão</td>
<td></td>
</tr>
<tr>
<td>Fosfatos naturais reativos (FNR)</td>
<td>São insolúveis em água, liberam o fósforo de maneira progressiva e contínua, com menos chances de ficar fixado.</td>
</tr>
<tr>
<td>Ex: Gafsa, Arad e Carolina do Norte</td>
<td></td>
</tr>
<tr>
<td>Termofosfato</td>
<td>São insolúveis em água e são obtidos pelo aquecimento (1000°C – 1450°C) da rocha fosfática. Solubilidade lenta com presença dos nutrientes Mg, Ca, Mn, Fe e Si, uma boa alternativa para ambientes tropicais.</td>
</tr>
<tr>
<td>Ex: termofosfatos comerciais, termofosfato magnesiano</td>
<td></td>
</tr>
<tr>
<td>Acidulados</td>
<td>São solúveis em água, são as fontes mais utilizadas devido sua maior eficiência.</td>
</tr>
<tr>
<td>Ex: superfosfato simples, superfosfato triplo, MAP e DAP</td>
<td></td>
</tr>
</tbody>
</table>
FÓSFORO (P)

Importante no momento do estabelecimento da pastagem ou conforme apareça deficiência no solo. O uso de fosfato natural aplicado em lanço e incorporado no plantio não é recomendável, sobretudo por não atender à alta demanda inicial de P da planta forrageira. Mesmo quando existe baixa demanda de manutenção, diante da elevada capacidade de absorção de P dos solos tropicais, fosfatos naturais liberam P muito lentamente. Nessa situação, pode-se associar fontes solúveis, com parte da dose recomendada aplicada como fontes naturais de baixa solubilidade.

Para solos com baixa disponibilidade de P recomenda-se a aplicação de 250 a 500 kg/ha de fosfato natural, incorporados nos primeiros 15 cm. Em solos mais argilosos, maior eficiência pode ser conseguida aplicando o fosfato em sulcos espaçados de 30 a 50 cm. Ressalta-se, no
FÓSFORO (P)

Porcentagem de P$_2$O$_5$ nas principais fontes solúveis em água

<table>
<thead>
<tr>
<th>Fosfatos solúveis em água</th>
<th>Teores de P$_2$O$_5$ (citrato de amônio + água)</th>
<th>Outros nutrientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfosfato simples</td>
<td>18%</td>
<td>10% de S</td>
</tr>
<tr>
<td>Superfosfato triplo</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td>DAP</td>
<td>45%</td>
<td>16% de N</td>
</tr>
<tr>
<td>MAP</td>
<td>48%</td>
<td>9% de N</td>
</tr>
</tbody>
</table>

Sintomas de deficiência: Folhas mais velhas pequenas.
Deficiência resulta em reduzido crescimento radicular e perfilhamento da pastagem.

Níveis nutricionais: 6% - 20% - 100% - 200% do ideal da solução de Arnon e Hoogland
RECOMENDAÇÕES PARA ADUBAÇÃO FOSFATADA

Adaptado de Werner et al. (1997)

<table>
<thead>
<tr>
<th>Nível de intensificação</th>
<th>Níveis no solo</th>
<th>Correção</th>
<th>Manutenção</th>
<th>Espécies forrageiras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixo < 1 UA/ha</td>
<td>Muito Baixo</td>
<td>60</td>
<td>30</td>
<td>Assume-se a utilização de espécies menos exigentes</td>
</tr>
<tr>
<td></td>
<td>Baixo</td>
<td>40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Médio</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Médio ~4 UA/ha</td>
<td>Muito Baixo</td>
<td>80</td>
<td>40</td>
<td>Assume-se a utilização de espécies dos Grupos II ou III</td>
</tr>
<tr>
<td></td>
<td>Baixo</td>
<td>60</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Médio</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Alto 4 a 7 UA/ha</td>
<td>Muito Baixo</td>
<td>100</td>
<td>50</td>
<td>Assume-se a utilização de espécies exigentes (Grupo I)</td>
</tr>
<tr>
<td></td>
<td>Baixo</td>
<td>70</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Médio</td>
<td>40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Muito Alto Irrigado</td>
<td>Muito Baixo</td>
<td>200</td>
<td>60</td>
<td>Assume-se a utilização de espécies exigentes (Grupo I)</td>
</tr>
<tr>
<td></td>
<td>Baixo</td>
<td>100</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Médio</td>
<td>70</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>40</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
POTÁSSIO (K)

Função: O potássio é, geralmente, o segundo elemento extraído em maior quantidade pelos vegetais e é extremamente móvel dentro da planta. É presente em quase todos os processos bioquímicos e fisiológicos das plantas, incluindo a regulação da pressão osmótica, abertura e fechamento de estômato, fotossíntese, resistência ao frio e doenças.

Fonte: Freire et al. (2012)

O K deve alcançar as raízes para que seja absorvido. Esse processo requer **umidade no solo** e **crescimento radicular** para o bom suprimento do nutriente às plantas.
POTÁSSIO (K)

Fontes: As principais fontes de K para adubação na agricultura são: cloreto de potássio, sulfato de potássio e nitrato de potássio. O cloreto de potássio (KCl) é o mais utilizado, com cerca de 90% do volume aplicado para suprir a necessidade de K na agricultura brasileira. Outras fontes de K são listadas abaixo:

<table>
<thead>
<tr>
<th>FONTE DE K</th>
<th>FÓRMULA QUIMICA</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>S</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloreto de Potássio</td>
<td>KCl</td>
<td></td>
<td></td>
<td>60-62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfato de Potássio</td>
<td>K₂SO₄</td>
<td></td>
<td></td>
<td>50-52</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Sulfato de Potássio Magnésio</td>
<td>K₂SO₄ 2Mg-SO₄</td>
<td>22</td>
<td>22</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrato de potássio</td>
<td>KNO₃</td>
<td>13</td>
<td></td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrato de potássio sódio</td>
<td>KNa(NO₃)₂</td>
<td>15</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidróxido de Potássio</td>
<td>KOH</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonato de Potássio</td>
<td>K₂CO₃KHC O₃</td>
<td></td>
<td></td>
<td><68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ortofosfato de Potássio</td>
<td>KH₂PO₄K₂H PO₄</td>
<td>30-60</td>
<td>30-50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polifosfato de Potássio</td>
<td>K₄P₂O₇</td>
<td>40-60</td>
<td></td>
<td>22-48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metafosfato de Potássio</td>
<td>KPO₃</td>
<td>55-57</td>
<td></td>
<td>38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POTÁSSIO (K)

Sintomas de deficiência: A deficiência de K pode se estabelecer inicialmente sem provocar sintomas visíveis, mas já afeta a taxa de crescimento da pastagem. O sistema radicular, em plantas deficientes em potássio, será menos profundo e pouco desenvolvido, o que prejudicará a absorção de água e nutrientes.

Folhas mais velhas apresentam clorose nas margens, avançando para o centro da folha

Níveis nutricionais: 6% - 20% - 100% - 200% do ideal da solução de Arnon e Hoogland
POTÁSSIO (K)

Aplicação: Em solos argilosos, o K permanece relativamente próximo do ponto de aplicação, a lixiviação ocorre com maior intensidade nos solos de textura média a arenosa, os quais geralmente possuem CTC mais baixa.

Os fertilizantes comuns de K são completamente solúveis em água e, em alguns casos, possuem uma elevada concentração de sais. Assim, se posicionados muito próximo às sementes ou mudas, eles podem reduzir a germinação e a sobrevivência da planta.

Na implantação de pastagens, a aplicação dos fertilizantes potássicos normalmente ocorre no sulco de plantio, embora também possa ser feita em lance, antes do plantio. Quando se aplicam doses menores de fertilizante potássico, a aplicação no sulco é mais vantajosa pois é possível garantir maior quantidade de nutrientes próximo do sistema radicular. Em solos argilosos e deficientes, é preferível fazer a incorporação de potássio antes do plantio.

Em pastagens perenes já estabelecidas ou na recuperação de pastagens degradadas, a adubação potássica é feita em cobertura sem incorporação, e a aplicação é feita em épocas nas quais as plantas já possuem sistema radicular bem desenvolvido e, portanto, possuem condições de absorver o nutrientes. A dose total recomendada deve ser parcelada em várias vezes, com mais aplicações em solos de textura mais leve.

Fonte: Freire et al. (2012)
Recomendações para adubação potássica

Para culturas anuais ou por ocasião do estabelecimento de pastagens, recomenda-se não aplicar mais de 60 kg/ha de K₂O no sulco de plantio. O restante deve ser aplicado em cobertura no início da fase de maior desenvolvimento das plantas, cerca de 30 a 60 dias após a implantação. Na adubação de manutenção em pastagens já estabelecidas, o K pode ser aplicado junto à adubação nitrogenada.

Para alta produtividade, o potássio deve corresponder a cerca de 5% da CTC do solo a pH 7,0

<table>
<thead>
<tr>
<th>Teor de K⁺ no solo</th>
<th>Diagnóstico</th>
<th>Dose de K₂O para manutenção – Aplicação anual (kg/ha)</th>
<th>Sistemas intensivos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média da camada 0-20 cm (K⁺ trocável, em mmolc/dm³)</td>
<td>Gramíneas do grupo I</td>
<td>Gramíneas do grupo II</td>
<td>Gramíneas do grupo III</td>
</tr>
<tr>
<td>0,0 – 0,7</td>
<td>Muito Baixo</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>0,8 – 1,5</td>
<td>Baixo</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>1,6 – 3,0</td>
<td>Médio</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>3,1 – 6,0</td>
<td>Alto</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>>6,0</td>
<td>Muito Alto</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Para relembrar quais gramíneas pertencem aos grupos I (Baixa exigência), II (Média exigência) e III (Exigentes), consulte página 10.

Adaptado de Werner et al. (1997), Raij et al. (1997) e Freire et al. (2012)
Cantarutti et al. (1999) elaboraram recomendação para sistemas intensivos de produção.

<table>
<thead>
<tr>
<th>Teor de K^+ no solo</th>
<th>Diagnóstico</th>
<th>Estabelecimento</th>
<th>Manutenção</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média da camada 0-20 cm (K^+ trocável, em mg/dm3)</td>
<td>Kg/ha de K$_2$O</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td><40</td>
<td>Baixo</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>40 a 70</td>
<td>Médio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>70</td>
<td>Adequado</td>
<td>0</td>
<td>Relação N:K 1:0,8</td>
</tr>
</tbody>
</table>

Doses elevadas de potássio podem reduzir a disponibilidade de magnésio (Mg) para a planta. Esse problema é normalmente encontrado em solos arenosos, ou em situações onde a calagem não é realizada de forma frequente, a fim de repor o Mg no solo. Por outro lado, pastagens cultivadas em solos com elevados teores de Mg podem sofrer de deficiência de potássio. Assim, para doses maiores que 100 kg/ha de K$_2$O, a aplicação em lance com incorporação, antes do plantio (potassagem, veja página 25), é a melhor opção (equivalente a 167 kg/ha de KCl).
ENXOFRE (S)

Função: O enxofre (S) é essencial na formação de proteínas na planta e para a nodulação em leguminosas, fazendo parte de alguns aminoácidos. Auxilia, ainda, na produção de enzimas e vitaminas, ajuda na resistência ao frio e está envolvido também na fotossíntese da planta.

O enxofre é absorvido pelas plantas na forma SO_4^{2-}, o qual é altamente sujeito às perdas por lixiviação.

Solos argilosos com altos teores de óxidos de ferro apresentam grande capacidade de adsorção de S, diminuindo sua movimentação no perfil do solo. Já em solos arenosos a movimentação do S é maior, mas está sujeito a maiores perdas. Além disso, solos arenosos possuem baixos teores de matéria orgânica e, consequentemente, menores reservas de S orgânico. Pastagens irrigadas, submetidas à calagem frequente e sob altas doses de adubação com ureia e fontes de P, como MAP e DAP, podem ser deficientes em S.
ENXOFRE (S)

Fontes: Pastagens tropicais normalmente não são adubadas com fontes específicas de S. Esse nutriente é fornecido ao solo junto com fontes de outros nutrientes, tais como sulfato de amônio, superfosfato simples ou junto ao gesso agrícola. Se essas fontes são utilizadas na adubação, a necessidade de S às pastagens já é suprida.

(Motta T. P.; Luz P.H.C., 2016)

Níveis nutricionais: 6% - 20% - 100% - 200% do ideal da solução de Arnon e Hoogland

Sintomas de deficiência: Sua deficiência ocorre em solos pobres em matéria orgânica (MO), pois 90 a 95% do S está na MO do solo. A deficiência de S em pastagens promove redução nos níveis de proteína da planta, as plantas produzem folhas pequenas, com entrenós curtos e colmos finos, resultando em menor produção de forragem.

Folhas mais novas apresentam sinais de clorose (amarelecimento) e margens enroladas
Aplicação: Pastagens tropicais normalmente não são adubadas com fontes específicas de S. Dessa forma, os níveis de S podem ser elevados com a adoção de práticas corretivas, utilizando o gesso. Além disso, o ideal é fornecer uma quantidade mínima de S na adubação de manutenção, após cada ciclo de pastejo, utilizando fontes de N ou P que contenham S, tais como sulfato de amônio e superfosfato simples.

<table>
<thead>
<tr>
<th>Teor de S no solo</th>
<th>Diagnóstico</th>
<th>Dose de gesso¹ (kg/ha)</th>
<th>Dose de gesso¹ (kg/ha)</th>
<th>Dose de gesso¹ (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média das camadas 0-20 e 20-40 cm (S-SO₄²⁻ em mg/dm³)</td>
<td>Solos com >20% argila</td>
<td>Solos com <20% argila</td>
<td>Sistemas intensivos ou irrigados</td>
<td></td>
</tr>
<tr>
<td>0 – 5</td>
<td>Baixo</td>
<td>10 x % argila</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>6 – 10</td>
<td>Médio</td>
<td>5 x % argila</td>
<td>100</td>
<td>750</td>
</tr>
<tr>
<td>11 – 15</td>
<td>Alto</td>
<td>Manutenção e reposição com adubos que contém enxofre</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>> 15</td>
<td>Alto</td>
<td>Manutenção e reposição com adubos que contém enxofre</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

O S está intimamente ligado ao metabolismo do N. Assim, à medida em que se aumenta a dose de N, é necessário aumentar a dose de S para se obter concentrações adequadas do nutriente na planta.
Os micronutrientes desempenham funções vitais no metabolismo das plantas, quer como parte de compostos responsáveis por processos metabólicos e fenológicos, ou como ativadores enzimáticos e na produção e regulação de fitormônios.
Funções e importância: O ferro (Fe) é essencial ao metabolismo energético, atua na fixação do nitrogênio e desenvolvimento dos colmos e raízes. O manganês (Mn) atua na síntese da clorofila, e participa do metabolismo energético. O molibdênio (Mo) tem um papel significativo para a fixação do N pelas bactérias, no caso das leguminosas. Atua, também, no metabolismo do N na planta. O zinco (Zn) é fundamental para a síntese das proteínas, desenvolvimento das partes florais, produção de grãos e sementes e maturação das plantas.

O boro (B) atua no metabolismo de carboidratos, transportes de açúcares, na formação da parede celular, divisão celular e no movimento da seiva. O cobre (Cu) tem papel importante na fotossíntese, respiração, redução e fixação de N que ocorre no interior dos nódulos nas raízes de leguminosas.

Fonte: https://www.agrolink.com.br/fertilizantes/micronutrientes_361450.html

Adaptado de:
MICRONUTRIENTES EM PASTAGENS

Fontes: Sais e óxidos inorgânicos, silicatos fundidos e quelatos são usados como fontes de micronutrientes, isoladamente ou incorporados em formulações com macronutrientes.

SILICATOS (fritas)

São obtidos através da fusão de silicatos com micronutrientes. Estão na forma insolúvel, portanto, devem ser incorporados ao solo para maior eficácia. Quanto maior o tamanho da partícula, mais demorada será a disponibilização do micronutriente.

QUELATOS

Produtos solúveis que mantém os metais neles contidos fortemente complexados e, em muitos casos, protegendo os elementos de reações que poderiam reduzir sua disponibilidade no solo.

Tendência crescente de incorporação dos micronutrientes em formulações NPK, principalmente por causa da dificuldade de aplicação das pequenas quantidades, normalmente necessárias nas adubações.
FONTES DE MICRONUTRIENTES

Principais fontes de micronutrientes e sua composição:

<table>
<thead>
<tr>
<th>Fontes</th>
<th>B</th>
<th>Cu</th>
<th>Fe</th>
<th>Mn</th>
<th>Mo</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE-BR10</td>
<td>2,5</td>
<td>1,00</td>
<td>4,00</td>
<td>4,00</td>
<td>0,10</td>
<td>7,00</td>
</tr>
<tr>
<td>FTE-BR12</td>
<td>1,8</td>
<td>0,8</td>
<td>3,00</td>
<td>2,00</td>
<td>0,10</td>
<td>9,00</td>
</tr>
<tr>
<td>FTE-BR13</td>
<td>1,50</td>
<td>2,00</td>
<td>2,00</td>
<td>2,00</td>
<td>0,10</td>
<td>7,00</td>
</tr>
<tr>
<td>FTE-BR15</td>
<td>2,8</td>
<td>0,80</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
<td>8,00</td>
</tr>
<tr>
<td>FTE-BR16</td>
<td>1,50</td>
<td>3,50</td>
<td>-</td>
<td>-</td>
<td>0,40</td>
<td>3,50</td>
</tr>
</tbody>
</table>

Sulfatos e cloretos solúveis em água

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfato de manganês</td>
<td>25-28%</td>
</tr>
<tr>
<td>Sulfato de ferroso</td>
<td>19-20%</td>
</tr>
<tr>
<td>Sulfato de zinco</td>
<td>21-22%</td>
</tr>
<tr>
<td>Cloreto de zinco</td>
<td>42-45%</td>
</tr>
</tbody>
</table>

Óxidos e hidróxidos insolúveis em água

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Óxido cúprico</td>
<td>75%</td>
</tr>
<tr>
<td>Óxido de zinco</td>
<td>75-80%</td>
</tr>
<tr>
<td>Óxido de manganês</td>
<td>63%</td>
</tr>
<tr>
<td>Hidróxido de cobre</td>
<td>66%</td>
</tr>
</tbody>
</table>
ANÁLISE PARA MICRONUTRIENTES: CUIDADOS COM A COLETA DE SOLO

A análise de solo para micronutrientes é considerada naqueles casos em que ocorreram deficiências. Em São Paulo, deficiências de zinco e boro podem ocorrer de forma mais frequente e, em poucos casos, para cobre e manganês.

Na coleta de amostras para análise de micronutrientes, usar trado de aço e evitar baldes de metal galvanizado.

As recomendações de adubação de micronutrientes, quando indicadas nas tabelas, são para aplicações localizadas por ocasião do plantio, no sulco ou em covas, ou mesmo na superfície do solo, para culturas perenes.

O molibdênio pode ser aplicado, de maneira muito eficiente, junto com as sementes ou via adubação foliar. Isso é possível pelas baixas quantidades do nutriente exigidas pelas plantas, o que não ocorre com os demais micronutrientes. Em culturas perenes, a aplicação deve ocorrer após a realização da calagem, no início das chuvas.
Os micronutrientes, com exceção do ferro, apresentam efeito residual das adubações, que podem se estender por vários anos, dependendo das quantidades aplicadas.

Dos micronutrientes, apenas o cloro e o boro apresentam mobilidade acentuada no solo, mas não existe registro de ocorrência de deficiências de cloro nas condições do estado de São Paulo. Já o boro, pela sua mobilidade, pode ser aplicado em adubação de cobertura, mesmo em culturas anuais.

Adaptado de Werner et al. (1997) e Raij et al. (1997)
De forma geral, a recomendação para áreas de produção intensiva de pastagens, tem sido de 50 kg/ha de FTE BR-12, BR-13 ou BR-15, aplicados anualmente, no início da estação das chuvas.

As deficiências de Zn são comuns em áreas de cerrado, havendo, pois, necessidade de adubação. Nesse caso, recomenda-se a aplicação de 2 kg/ha de Zn, equivalente a 10 kg/ha de sulfato de zinco, juntamente com a adubação fosfatada por ocasião do plantio.

Na região do cerrado, os micronutrientes têm sido aplicados em pastagens por meio do emprego de FTE nas formulações BR-10 (contendo 2,5% de B; 0,1% de Co; 1,0% de Cu; 4,0% de Fe; 4,0% de Mn; 0,1% Mo; 7,0% de Zn) ou BR-16 (contendo 1,5% de B; 3,5% de Cu; 0,4% de Mo e 3,5% de Zn), recomendando-se de 30 a 50 kg/ha junto com a adubação fosfatada.

<table>
<thead>
<tr>
<th>Nível de intensificação</th>
<th>FTE BR-10</th>
<th>FTE-BR12</th>
<th>FTE BR-15</th>
<th>FTE BR-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixo</td>
<td>30 kg/ha cada 3 anos</td>
</tr>
<tr>
<td>~4 UA/ha</td>
<td>50 kg/ha cada 3 anos</td>
</tr>
<tr>
<td>Alto</td>
<td>50 kg/ha cada 2 anos</td>
</tr>
<tr>
<td>Irrigado</td>
<td>50 kg/ha anualmente</td>
<td>50 kg/ha anualmente</td>
<td>50 kg/ha anualmente</td>
<td>50 kg/ha anualmente</td>
</tr>
<tr>
<td>Sistemas intensivos com leguminosas</td>
<td>50 kg/ha anualmente de uma das formulações FTE BR-10, FTE BR-16 ou FTE BR-12 Extra</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adaptado de Raij et al. (1997) e Santos et al. (2010)
POSSO MISTURAR ADUBOS?

A opção pela mistura de grânulos (via de regra, N:P:K), apresenta-se interessante. Porém, os tamanhos diferentes dos grânulos podem resultar em desuniformidade na aplicação, quando aplicados com máquinas de distribuição centrífuga.

Além da segregação dos grânulos dentro do distribuidor, os tamanhos diferentes do grânulos farão com que eles alcancem distâncias diferentes na hora da aplicação. Grânulos menores atingem distâncias menores.

Para minimizar esse problema, já existem adubos nos quais os nutrientes, N:P:K ou N:Ca:Mg, estão contidos no mesmo grânulo. Isso evita problemas de segregação, proporcionando uma aplicação uniforme.
FERTILIZANTES DE LIBERAÇÃO CONTROLADA

Produtos encapsulados ou recobertos tem sido denominados fertilizantes de eficiência aumentada. Nestes fertilizantes são formados compostos solúveis no seu interior (NPK e alguns micronutrientes), envolvidos por uma membrana semipermeável ou recobertos com enxofre elementar e camadas de polímeros.

Para os fertilizantes de liberação controlada nitrogenados, a ureia recoberta com enxofre é o tipo de produto mais utilizado e fabricado atualmente. Os fertilizantes recobertos não se restringem apenas aos nitrogenados, podendo ser utilizados em diversos tipos de formulações que contêm um ou mais nutrientes no interior dos grânulos.

A liberação do nutrientes nesses fertilizantes depende diretamente da espessura das camadas de polímero, sendo possível alterar a taxa de liberação de acordo com a quantidade e a composição do material de revestimento. A temperatura e umidade também influenciam diretamente a velocidade de liberação dos nutrientes do interior do grânulo.

Fonte: Assuntos sobre agronomia (2015)
Metas e sugestões de adubação para sistemas com baixo nível de intensificação

<table>
<thead>
<tr>
<th>Metas e sugestões de adubação para sistemas com baixo nível de intensificação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturação por bases</td>
</tr>
<tr>
<td>Adubação nitrogenada</td>
</tr>
<tr>
<td>Fósforo</td>
</tr>
<tr>
<td>Potássio</td>
</tr>
<tr>
<td>Enxofre</td>
</tr>
<tr>
<td>Micronutrientes</td>
</tr>
</tbody>
</table>

Metas e sugestões de adubação para sistemas com médio nível de intensificação

<table>
<thead>
<tr>
<th>Metas e sugestões de adubação para sistemas com médio nível de intensificação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturação por bases</td>
</tr>
<tr>
<td>Adubação nitrogenada</td>
</tr>
<tr>
<td>Fósforo</td>
</tr>
<tr>
<td>Potássio</td>
</tr>
<tr>
<td>Enxofre</td>
</tr>
<tr>
<td>Micronutrientes</td>
</tr>
</tbody>
</table>

Metas e sugestões de adubação para sistemas com alto nível de intensificação

<table>
<thead>
<tr>
<th>Metas e sugestões de adubação para sistemas com alto nível de intensificação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturação por bases</td>
</tr>
<tr>
<td>Adubação nitrogenada</td>
</tr>
<tr>
<td>Fósforo</td>
</tr>
<tr>
<td>Potássio</td>
</tr>
<tr>
<td>Enxofre</td>
</tr>
<tr>
<td>Micronutrientes</td>
</tr>
</tbody>
</table>

Adaptado de Santos et al. (2010)
REFERÊNCIAS

REFERÊNCIAS

REFERÊNCIAS DAS IMagens

